Dataset simulation with LIgO ================================================================================== .. meta:: :twitter:card: summary :twitter:site: @immuneml :twitter:title: LIgO: simulate antigen or disease-associated signals in AIRR datasets :twitter:description: See tutorials on how to simulate antigen or disease-associated signals in AIRR datasets. :twitter:image: https://docs.immuneml.uio.no/_images/receptor_classification_overview.png For simulation of AIRR datasets with user-defined signals, immuneML uses LIgO. It supports simulation on both repertoire and receptor level. It can be used from immuneML through LigoSim instruction. For more details on the decisions behind simulation, see the Methods section of the original paper: Chernigovskaya, M., Pavlović, M., Kanduri, C., et al. (2025). Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning. Nucleic Acids Research, 53(3), gkaf025. https://doi.org/10.1093/nar/gkaf025 See LIgO tutorials below: .. toctree:: :maxdepth: 1 ligo_simulation_yaml how_to_simulate_co-occuring_signals how_to_simulate_paired_chain_data simulation_with_custom_signal_functions